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Studies on the formation of y-Fe203 
(maghemite) by thermal decomposition 
of ferrous oxalate dihydrate 
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The thermal decomposition of ferrous oxalate dihydrate FeC20,.2H20, has been investigated 
using thermogravimetric (TG), differential thermogravimetric (DTG), differential thermal 
analysis (DTA), X-ray diffraction and infra-red spectroscopic techniques. 

The DTA data obtained in air consist of an endothermic dehydration peak at ~ 190~ 
and two exothermic peaks at ~-~ 245 and ~ 360 ~ C. The first exotherm corresponds to the 
primary oxidative decomposition while the second one seems to be due to a structural 
transformation from a disordered or non-crystalline to a crystalline state of ~-Fe203. 
Similar experiments carried out using a nitrogen atmosphere show an endothermic peak 

190 ~ C followed immediately by an exothermic peak at 240 ~ C. The final product of this 
decomposition has been identified as Fe30,. 

The oxalate dihydrate containing traces of moisture decomposes in air under the ambient 
of its own gaseous products at ~ 300~ to give ~,-Fe20~. This compound has been 
characterized by X-ray diffraction and magnetic hysteresis measurements. 

1. Introduct ion 
The important application of ~'-Fe203 (mag- 
hemite) in magnetic recording tapes and ferrite 
components is well known. It has been found 
that ferritization is facilitated (occurs at lower 
temperature, ~<800~ when ),-Fe203 is used 
instead of a-Fe203 as a reactant. Whereas 
7-F%O3 is a vacancy ordered spinel, Fe 3+ 
[UI~ F%/~ a+] 04, magnetite Fe~O4 has an inverse 
spinel structure, Fe z+ [Fe 2+ Fe 3+] 04. The usual 
method of preparation of ~,-F%O8 is by the 
reduction of a-Fe20~ (hematite) to F%O4 and 
the re-oxidation of Fe~O4 to "/-F%O8. Tsyrno- 
rechki et al [1, 2] prepared 7-Fe203 by heating 
FeC204.2H20 at 350~ for 24 h in an atmos- 
phere containing 4 to 5% oxygen. Recently, 
Gopalakrishnan [3 ] obtained 7-Fe20~ by heating 
FeC204.2H20 in a stream of air around 200~ 
However, the data regarding its characterization 
have not been mentioned. It seems that the 
infra-red spectra of the metal oxalate and its 
decomposition products have not been recorded 
in the literature. With a view to determining the 
preparative conditions and the process of 
formation of 7-Fe20~, we followed the theimal 

430 

decomposition of the dihydrate by TG, DTG 
DTA, X-ray diffraction, infra-red absorption 
and magnetic measurements. 

2. Experimental 
2.1. Preparation of the samples 
FeC204.2H20 was prepared by the method of 
Bevan et al [4]. It was a fine, yellow crystalline 
powder. For isothermal decomposition studies in 
air, a known mass of the oxalate was maintained 
at selected temperatures (determined from the 
TG curves) for 6 h in a temperature-controlled 
air oven while similar studies in nitrogen 
ambient were made by passing a stream of puri- 
fied nitrogen over the sample placed in a tube 
furnace. 

2.2. Thermal analyses in air and nitrogen 
The thermogravimetric (TG), differential ther- 
mogravimetric (DTG) and differential thermal 
analysis (DTA) curves in air and nitrogen were 
recorded on a Mettler thermal analyser. All the 
experiments were carried out under identical 
conditions maintaining the following instru- 
mental factors: 
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T G  range, 1 mg (full scale) 
DTG,  20 mg rain -1 (full scale) 
DTA, 50 gV (full scale) 
heating rate, 8~ min -1 
gas flow rate, 150 ml min -1 
mass of the sample, <~ 10 rag. 

2.3. X-ray diffraction studies 
The products of the isothermal decomposition 
of FeC204.2H20 were analysed by the X-ray 
powder diffraction (XRD) method using MoKa 
radiation (A = 0.709 A, Zr filter) on a Philips 
instrument (PW 1051). Identifications were made 
by comparing the experimental "d"  values and 
relative intensities with those reported in the 
ASTM powder data file. 

2.4. Infra-red spectroscopy 
The infra-red spectra were recorded on a Perkin 
Elmer model 237 spectrophotometer using 
nujol mull. 

3. Results and discussion 
3.1. Thermal studies in air and nitrogen 

atmospheres 
The TG, DTG and DTA curves for FeC204. 
2H~O are shown in Figs. 1 and 2. The results in 
air (Fig. 1) are in good agreement with those 
reported by Bevan et al [4] and Dollimore et al 
[5]. The T G  curve shows a continuous mass loss 
in the temperature range 170 to 270~ (total 
loss ~_ 55.5 ~ ,  corresponding to the formation of 
F%O8). The DTA curve consists of  an endo- 
thermic dehydration peak (at ~ 190~ and 
two exothermic peaks (at 245 and 360~ The 
first exotherm corresponds to an oxidative 

240oi 
t 

""~----TEMPERATURE 
INCREASING 

fEXO 

DTG 

O~r~ ENDO 
o 

Figure 1 TG, DTG and DTA curves for FeC~O~.2I-I20 in 
air. 
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Figure 2 TG, D T G  and D T A  curves for FeC~O4.2H20 in 
nitrogen. 

decomposition while the second one, which is 
relatively weak in intensity, appears to be due to 
a structural transformation. This is further 
suggested by the fact that there is no mass loss 
in the TG  curve corresponding to this peak. 

The curves using a nitrogen atmosphere (Fig. 
2) indicate some difference with those of Bevan 
et al [4] and Dollimore et al [5] in that they 
observed a peak around 340~ which is not 
observed in our case. The T G  curve shows a 
continuous mass loss (total loss ~ 60 ~ ,  corres- 
ponding to the formation of FeO) up to about 
270~ There is a small but distinct kink at 
210~ indicating the dehydration and decom- 
position to be two distinguishable reactions. 

3.2. Isothermal decomposition, infra-red 
spectroscopic and X-ray studies 

The results of these experiments are presented in 
Table I. 

The decomposition is almost complete even 
at 200~ (mass loss _~ 54~)  and this is con- 
firmed by the infra-red spectra of the samples 
heated at 200, 230, 300 and 350~ in which the 
bands at 3450, 1625 and 810 cm -1 characteristic 
of OH(H20),  CO and OH(H20) groups, 
respectively (present in the pure oxalate as well 
as in the sample heated at 150~ are absent. 
The sample heated at 170~ indicates a mass 
loss of 37.4 ~ which is more than that required 
by dehydration alone (theoretical mass loss -~ 
20~) .  Thus it is evident that the onset of 
decomposition starts around 170 ~ itself. 
However, the infra-red spectrum of this product 
shows the band at 1625 cm-1 (due to the carbonyl 
group) indicating that decomposition is in- 
complete. 
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TABLE I Isothermal decomposition of FeC204.2H20 in air 

Temp. (~ Time of Yo mass Infra-red data 
heating (h) loss 

3450 cm - t  1615 cm -1 810 cm -t 
OH(HzO) (CO) OH(HaO) 

X-ray data Colour of the product 

100 6 - -  + + + 
150 6 3.4 + + + 
170 6 37.4 - + - 

200 6 53.8 - Weak - 
peak 

230 6 55.5 - - - 

300 6 55.5 - - - 
350 6 55.5 - - - 

FeC20~.2H20 Yellow 
FeCaO4.2H20 Yellow 
Non-crystalline or Dark red-brown 
disordered material 
Non-crystalline or Dark red-brown 
disordered material 
Non-crystalline or Dark red-brown 
disordered material 
a-Fe20 3 Red-brown 
c~-Fe203 Red-brown 

The s tar t ing mater ia l ,  FeC204.2H20,  gave a 
sharp  pa t t e rn  in the  X- ray  d i f f rac togram while the  
p roduc ts  ob ta ined  after  hea t ing  at  170, 200 and  
230~ gave a diffuse-pat tern indica t ing  them to 
be d isordered  or  non-crystal l ine.  The  samples 
hea ted  at  100 and  150~ are found  to be  
FeC~O4.2H~O. The  final p roduc t  o f  decom- 
pos i t ion  in air  is a -Fe203  while tha t  in n i t rogen 
is Fe304. The  i so thermal  decompos i t ion  studies 
at  200 and 230~ enable  us to  in terpre t  the 
second i so therm at 360~ in the  D T A  curve in 
air  as being due  to  the t rans i t ion  f rom a non- 
crystal l ine state o f  the a-Fe~Oa fo rmed  to a 
crystal l ine form. 

In  none  o f  the  above  exper iments  pe r fo rmed  
in air  could  we confi rm the fo rma t ion  o f  
v -Fe203 as s ta ted by  G o p a l a k r i s h n a n  [3]. 
However ,  y-Fe2Oa was ob ta ined  in a separa te  
set o f  experiments ,  the  detai ls  of  which are given 
in fol lowing Sections.  

4. Formation and characterization of 
~,-Fe~03 

A b o u t  50 g FeC204 .2H20  (slightly moist) were 
p laced  in a large porce la in  dish and  kept  in a 
furnace ma in ta ined  at  300~ for  15 to 20 min  
when a red glow was seen to appea r  on  the  
surface of  the sample.  The  dish was taken  out  
and  its contents  were tho rough ly  mixed p ro -  
ducing dull  r ed -brown coarse  p roduc t .  The  
co lour  o f  the  sample  i tself  gave an ind ica t ion  of  
the  fo rma t ion  of  },-Fe~O 3. 

The  p roduc t  was X- ray  character ized and 
identif ied as 7-Fe2Oz with t races of  a-Fe~O3 
(Table II). Fur the r  conf i rmat ion  was ob ta ined  
f rom magnet ic  hysteresis measurements  made  
on an a.c. e lec t romagnet ic  hysteresis l oop  t racer  
[6]. The  sample  was found  to give a large 
coercive force ( ~  250 Oe). I t  m a y  be no ted  tha t  
a l though the s tar t ing mate r ia l  (FeC204.2H~O) 
was a fine powder ,  the p roduc t  (~-Fe203) was 

TABLE I I  X-ray and magnetic data for 7-Fe203 

X-ray data 

Reported "d" Intensity Present Intensity 
value investigation "d" 

value 

Magnetic data 

Property Reported Present 
investigation 

2.94 S 2.94 S 
2.51 VS 2.69 (~-Fe203) W 

2.08 S 2.50 VS 
1.82 S 2.07 MS 
1.70 MS 1.87 (~-Fe~Oa) W 
1.60 S 1.70 MS 
1.47 S 

Coercive force 
Saturation 
magnetization 
Ratio of remanence 
to saturation 
(MinIMs) 

250 to 300 Oe 250 Oe 
74 emu g-1 70 emu g-1 

0.67 0.6 
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quite coarse. This is perhaps associated with the 
ferrimagnetic property of the compound. 

5. A possible explanation for the 
formation of ~'-Fe203 

In general, ),-Fe203 is formed by the following 
reaction route: 

FeO (wiistite) -+ F%O~ (magnetite) -+ 
),-F%O3 (maghemite). 

This 7-F%O~ transforms at high temperatures 
(>  400~ into a-F%O8 (corundum structure) 
which is antiferromagnetic. The formation of 
magnetite phase is an essential step in the 
preparation of 7-F%O3. In order that F%O4 
is formed as an intermediate during the ferrous 
oxalate decomposition, it is necessary that the 
ambient atmosphere over the sample produces a 
low partial pressure of oxygen or even a slightly 
reducing atmosphere. This is perhaps realized in 
the present experiment if one considers the 
following reactions which are expected to occur 
during the decomposition 

FeCzO4.2HO -+ FeC~O4 + 2H20 
FeC20~---~ FeO + CO + CO2 

3FeO + H20--+ F%Oa + H~. 

These gaseous reaction products, therefore, 
produce gas buffers like CO-CO2, H~-H20 which 
produce low oxygen partial pressures. Hence, an 
intimate mixing of the oxalate during its decom- 
position (i.e. when the red glow occurs on the 
surface of the sample) provides the decomposing 
species with an environment of low oxygen 
partial pressure. This enables the formation of 
F%O4 and its transformation to 7-F%O~. 

6. Conclusions 
The present study leads us to the following 
conclusions: 

(a) 7-F%Oa cannot be obtained by heating 
FeC~O~.2H20 in a stream of air at 210~ as 
reported earlier [3]. 7-F%O3 can be obtained by 
heating FeC~.O4.2HzO in air at 300~ under the 
ambient of its own gaseous products; 

(b) the presence of traces of moisture in the 
starting oxalate seems to be necessary. It was 
found that poor yields of 7-F%O3 were obtained 
when the starting material was completely dry; 

(c) 7-Fe20~, prepared as described above, 
possesses good magnetic properties (He N 250 
Oe) and, hence, may be useful in the manufac- 
ture of such materials as magnetic tapes and 
ferrite materials. 
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